Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys.
نویسندگان
چکیده
The value of events that predict future rewards, thereby driving behavior, is sensitive to information arising from external (environmental) and internal factors. The ventral prefrontal cortex, an anatomically heterogeneous area, has information related to this value. We designed experiments to compare the contribution of two distinct subregions, orbital and ventromedial, of the ventral prefrontal cortex to the encoding of internal and external factors controlling the perceived motivational value. We recorded the activity of single neurons in both regions in monkeys while manipulating internal and external factors that should affect the perceived value of task events. Neurons in both regions encoded the value of task events, with orbitofrontal neurons being more sensitive to external factors such as visual cues and ventromedial neurons being more sensitive to internal factors such as satiety. Thus, the orbitofrontal cortex emphasizes signals for evaluating environment-centered, externally driven motivational processes, whereas ventromedial prefrontal cortex emphasizes signals more suited for subject-centered, internally driven motivational processes.
منابع مشابه
Primate Ventromedial Prefrontal Cortex Neurons Continuously Encode the Willingness to Engage in Reward-Directed Behavior.
To survive in their complex environment, primates must integrate information over time and adjust their actions beyond immediate events. The underlying neurobiological processes, however, remain unclear. Here, we assessed the contribution of the ventromedial prefrontal cortex (VMPFC), a brain region important for value-based decision-making. We recorded single VMPFC neurons in monkeys performin...
متن کاملMotivation and affective judgments differentially recruit neurons in the primate dorsolateral prefrontal and anterior cingulate cortex.
The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to ...
متن کاملControl of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex.
Goal-directed actions are guided by expected outcomes of those actions. Humans with bilateral damage to ventromedial prefrontal cortex, or the amygdala, are deficient in their ability to use information about positive and negative outcomes to guide their choice behavior. Similarly, rats and monkeys with orbital prefrontal or amygdala damage have been found to be impaired in their responses to c...
متن کاملInvolvement of human thalamic neurons in internally and externally generated movements.
Several anatomical studies support the existence of recurrent neural pathways from cortical motor areas to the thalamus via basal ganglia and back to the cortex. Neuronal responses to internally and externally generated sequential movements have been studied in the motor and premotor cortex of monkeys, but the involvement of subcortical motor structures such as the thalamus have not been studie...
متن کاملFor Better or Worse: Reward Comparison by the Ventromedial Prefrontal Cortex
In this issue of Neuron, Strait et al. (2014) studied how neurons in the monkey ventromedial prefrontal cortex encode value-based decisions. Neurons were commonly influenced by reward magnitude and probability, showed anticorrelation for better and worse options, and covaried with choice independent of value.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 25 شماره
صفحات -
تاریخ انتشار 2010